Biocompatible and Flexible Hydrogel Diode‐Based Mechanical Energy Harvesting
نویسندگان
چکیده
منابع مشابه
Electrochemically driven mechanical energy harvesting
Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress-voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemi...
متن کاملFlexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.
We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. For having both the pyroelectric and piezoelectric properties, a polarized poly(vinylidene fluoride) (PVDF) film-based nanogenerator (NG) was used to harvest thermal and mechanical energies. Using aligned ZnO nanow...
متن کاملNonlinear energy harvesting through a multimodal electro-mechanical system
A semi-analytical method is used to illustrate the behavior of a multimodal nonlinear electromechanical system which is under base-excitation. System is considered as piezo-ceramic patches attached to a cantilever beam coupled to a resistive load. The cantilever beam is modeled as a nonlinear Timoshenko beam using Assumed Mode method and equations of motion are derived through Lagrange's equati...
متن کاملFlexible energy harvesting from hard piezoelectric beams
This paper presents design, multiphysics finite element modeling and experimental validation of a new miniaturized PZT generator that integrates a bulk piezoelectric ceramic onto a flexible platform for energy harvesting from the human body pressing force. In spite of its flexibility, the mechanical structure of the proposed device is simple to fabricate and efficient for the energy conversion....
متن کاملMicrobubbles as biocompatible porogens for hydrogel scaffolds.
In this study, we explored the application of lipid-shelled, gas-filled microbubbles as a method for creating on-demand microporous hydrogels for cartilage tissue engineering. The technique allowed for homogenous distribution of cells and micropores within the scaffold, increasing the absorption coefficient of large solutes (70kDa dextran) over controls in a concentration-dependent manner. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials Technologies
سال: 2017
ISSN: 2365-709X,2365-709X
DOI: 10.1002/admt.201700118